
ARMY RESEARCH LABORATORY 
""%¥  V'"   *   -*•*■««"»«  - — *f    ! 

A Comparison of the Performance 
of Two Popular Symmetric 

Multiprocessors When Used 
to Run High Performance 
Computing Applications 

by Daniel M. Pressel, Stephen Schraml, Steven Thompson, 
Dixie Hisley, Punyam Satya-narayana, Michael Knowles, 

and Darren M. Wah 

r.A. ....—\»Ji»w,*fSii«ü«lu,*.\1.-".;lw<wft «.»...v«,«,,«,.*   ;'*_»....: *^ifciw»,rt'«3iA.4v 

ARL-TR-2476 March 2002 

Approved for public release; distribution is unlimited. 

20020402 171 



The findings in this report are not to be construed as an 
official Department of the Army position unless so 
designated by other authorized documents. 

Citation of manufacturer's or trade names does not 
constitute an official endorsement or approval of the use 
thereof. 

Destroy this report when it is no longer needed. Do not 
return it to the originator. 



Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5067 

ARL-TR-2476 March 2002 

A Comparison of the Performance 
of Two Popular Symmetric 
Multiprocessors When Used 
to Run High Performance 
Computing Applications 

Daniel M. Pressel and Dixie Hisley 
Computational and Information Sciences Directorate, ARL 

Stephen Schraml 
Weapons and Materials Research Directorate, ARL 

Steven Thompson, Punyam Satya-narayana, 
and Michael Knowles 
Raytheon Systems Company 

Darren M. Wah 
Major Shared Resource Center, ARL 

Approved for public release; distribution is unlimited. 



Abstract  

Traditionally, symmetric multiprocessors have used modest numbers of 
processors. Since many of them were bus-based systems, they inherently lacked 
scalability to what might be referred to as moderate-sized systems. With the 
advent of the Sun HPC 10000 and the SGI Origin, we now have symmetric 
multiprocessors that have successfully scaled to moderate-sized systems. In fact, 
SGI has had some success at scaling the Origin into the lower end of the range of 
large systems. The first symmetric multiprocessor to make that claim was the 
Convex Exemplar. But based on our experience at the Distributed Center located 
at NRAD, San Diego, CA (now the Naval Command Control and Ocean 
Surveillance Center), its overall performance and scalability left something to be 
desired. 

This report presents the results from runs involving a variety of programs on the 
SGI Origins and Sun HPC 10000s located at the U.S. Army Research Laboratory 
(ARL)-MSRC, the Naval Research Laboratory (NRL-DC), Washington, DC, and 
other places. Some of these codes (e.g., F3D) are shared memory codes using 
OPENMP or its predecessors. The remaining codes use message passing (mostly 
MPI, but one PVM code was tested as well). Additionally, a limited number of 
runs were made with the CTH code when using processors on more than one 
Sun HPC 10000. While most of these codes ran well, some codes did require 
modifications. Additionally, in the process of making these measurements, the 
authors gained useful insights as to what does and does not work well on these 
systems. 

li 



Acknowledgments 

The authors thank Dale Shires, Raju Namburu, and Ram Mohan of the 
U.S. Army Research Laboratory for their input and Marek Behr, formerly of the 
U.S. Army High Performance Computing Research Center (AHPCRC), for 
sharing his results. We also thank our many colleagues who worked with us 
over the years on our research projects, helping us to collect these data and 
prepare this report. We would also like to thank the employees of Business Plus, 
especially Claudia Coleman and Maria Brady, who assisted in the preparation 
and editing of this report. 

Special thanks to Tom Kendall, Denke Brown, and the entire systems staff at the 
ARL-MSRC for their support of the various projects for which these runs were 
originally done. 

This work was made possible through a grant of computer time by the 
Department of Defense (DOD) High Performance Computing Modernization 
(HPCM) Program. Additionally, some of the results mentioned in this work 
came from projects that were funded as part of the Common High Performance 
Computing Software Support Initiative (CHSSI) administered by the DOD 
HPCM Program. 

Note: Definitions in boldface text can be found in the Glossary. 

in 



INTENTIONALLY LEFT BLANK. 

IV 



Contents 

Acknowledgments iii 

List of Figures vii 

List of Tables ix 

1. Introduction 1 

2. Brief Observations 3 

3. Performance 4 

4. Summary 5 

5. References 15 

Glossary 17 

Distribution List 19 

Report Documentation Page 23 



INTENTIONALLY LEFT BLANK. 

VI 



List of Figures 

Figure 1. CTH run times scaling the data set size in proportion to the number 
of processors used (data set supplied by Raju Namburu of the U.S. Army 
Research Laboratory, Aberdeen Proving Ground, MD) 6 

Figure 2. CTH run times (data set supplied by Steve Schraml of the U.S. 
Army Research Laboratory, Aberdeen Proving Ground, MD) 6 

Figure 3a. The performance of the shared memory version of the F3D code 
when run on modern scalable SMPs (1-million grid point test case) 7 

Figure 3b. The performance of the distributed memory version of the F3D 
code when run on a modern scalable SMP/MPPs (1-million grid point 
test case) 7 

Figure 4. The performance of the shared memory version of the F3D code 
when run on modern scalable SMPs (59-million grid point test case) 8 

Figure 5. The effect on performance and the consumption of CPU time from 
running a parallel job on an overloaded HP V-Class 8 

Figure 6. The effect on performance and the consumption of CPU time from 
running a parallel job on an overloaded SGI Origin 2000 9 

Vll 



INTENTIONALLY LEFT BLANK. 

vm 



List of Tables 

Table 1. Miscellaneous benchmarking runs 9 

Table 2. CTH benchmark runs 10 

Table 3. Additional CTH results 11 

Table 4. The performance of various versions of the F3D code when run on 
modern scalable systems (1-million grid point test case) 12 

Table 5. The performance of the shared memory version of the F3D code 
when run on modern scalable SMPs (59-million grid point test case)  13 

Table 6. The performance of the shared memory version of the F3D code 
when run on modern scalable SMPs (206-million grid point test case) 13 

Table 7. A comparison of the performance of the shared memory 
implementation of the CFD code Overflow and the PVM implementation 
of the same code 13 

Table 8. The performance of LES (a CFD code using direct simulation of 
large eddies) 14 

Table 9. The effect on performance and the consumption of CPU time from 
ninning a parallel job on an overloaded HP V-Class 14 

Table 10. The effect on performance and the consumption of CPU time from 
running a parallel job on an overloaded SGI Origin 2000 14 

IX 



INTENTIONALLY LEFT BLANK. 



1.   Introduction 

Several supercomputer architectures are viable today. MPPs, such as the Cray 
T3E, offer a large number of processors, each with its own nonshared memory. 
In MPP machines, when one processor needs to access data in the memory of 
another processor, the processor that "owns" the data must explicitly send the 
data to the requesting processor.* 

In contrast to distributed memory architectures are shared multiprocessor SMP 
machines, such as the Sun E10000, which share memory among all the 
processors. In between these two examples is the SMP cluster (such as an IBM 
SP). Here, a small number (e.g., 2-16 in the various implementations of the IBM 
SPs configured with SMP nodes) of processors share memory, and the machine is 
made up of a large number of these SMP nodes. As in more traditional MPPs, 
explicit cooperation between two processors is required to transfer data from one 
SMP node to another. 

Another intermediate architecture is the cc-NUMA machine, such as the SGI 
Origin 2000, where all the memory is logically shared but physically distributed. 
Here, two processors (one node) share local memory, but any processor can 
access all memory locations in the machine without the aid of any other 
processor. There can be significant differences in the designs and 
implementations of this class of system from vendor to vendor. As a result, some 
systems are much better suited for certain classes of problems—systems from 
SGI are heavily marketed in the scientific computing market, while systems from 
HP, Sequent, and Data General are more frequently marketed to the 
commercial/database market. 

Several programming models exist today, and each is supported on one or more 
computer architectures. While MPI was developed for distributed memory 
machines (MPPs), it can and has been implemented on SMP and shared memory 
machines. Writing shared memory code is perhaps easier than writing MPI 
code. But many codes today are written in MPI due to the popularity of the MPP 
machines for the last several years. When an MPI version of a code already 
exists, the programmer might as well consider using it, even if it would not be 
their choice if writing the code from scratch. So then it becomes a performance 
question as to whether a shared memory version or an MPI version of the code is 

*When using SHMEM (or equivalent) calls on systems that support them, programs may 
explicitly instruct processors to either put data into the memory of other nodes, or get data from 
the memory of remote nodes. However, this is very different from cache-coherent shared-memory 
symmetric multiprocessors, where the data resides in a globally accessible/coherent memory 
system accessed automatically using standard load and store instructions. 



most suitable on a non-MPP machine that provides efficient support for MPI, as 
almost all machines now do. 

As the performance runs presented in this report show, no single machine has a 
monopoly on the best performance with all programming models. While the 
Cray T3E does very well on MPI codes, it cannot run most shared memory codes. 
While some other machines can run all programming models, their performance 
varies, with each machine performing best on one code or another. 

The purpose of this report is not to explain the results or conclude that one 
machine is better than another. Rather, its sole purpose is to document the 
results that different groups have reported, so readers are better equipped to 
come to their own conclusions about the merits of the hardware, programming 
paradigms, and other related issues. Furthermore, while some of the codes 
mentioned in this report were tuned for one or more of these machines, tuning 
can be a major undertaking. As a result, for HPC codes that are commercially 
available and/or maintained by other sites, the authors have little or no ability to 
tune them for the specific machines. Instead, the authors of those codes tuned 
their own codes. 

The authors made these measurements as unbiasedly as possible. In fact, many 
of these results came from benchmarking efforts associated with procurement 
efforts (all such data reported in this report came from runs done in-house). 
Additionally, selecting which results to report was based on the perceived 
importance and merits of the codes in question; no results were excluded from 
this report because they violated a preconceived notion. As such, there are 
examples of different machines excelling for different codes. Some readers may 
wish to consider issues such as cost effectiveness, but this report does not include 
any cost data. Most likely, the faster machine is not always the most cost 
effective. 

Other issues not addressed in this report or only briefly addressed are as follows: 

(1) the stability of systems, 

(2) the scalability of systems to very large numbers of processors, 

(3) problems with the compilers and /or the operating systems, 

(4) the relative merits of the input/output (I/O) systems, 

(5) issues involving the queuing of jobs, 

(6) the requirements of the highly varied user community that uses the 
resources provided by the DOD HPCM Program, and 

(7) performance, profiling, and debugging tools. 



2.   Brief Observations 

The following observations have been collected from a number of sources. 

• HPF runs better on the SGI Origin than on the IBM SP (Wierschke 1997). 

• HPF runs best on the Cray T3E since the Portland Group first implements 
new ideas on it (Shires 2000). 

• In theory, jobs that run well on the SGI Origin should run well on the Sun 
HPC 10000. In practice, some codes would not compile, others would not 
run (at first), and many required some degree of tuning. 

• Care should be taken to avoid "overloading" (more processes/threads 
actively running than there are processors) any of the shared memory 
systems, since overloading can result in significant performance 
degradation and a significant increase in CPU time. 

• By itself, automatic parallelization is frequently of limited value; however, 
it may improve the performance of some programs parallelized using 
compiler directives. 

• Many codes run well on either the Sun or SGI systems, showing 
reasonable levels of performance and scalability. 

• Some codes will show significantly better per processor and/or overall 
performance on the SGI Origin than on either the Cray T3E or the IBM SP 
with P2SC processors. 

• The performance of the Sun HPC 10000 is frequently reported to be 
between that of the SGI Origin 2000 with 300-MHz R12000 processors and 
the SGI Origin 2000 with 195-MHz R10000 processors. 

• For some vectorizable codes, the shared memory programming paradigm 
is an excellent choice for parallelizing programs that are difficult to 
parallelize. 

• For some codes, HPF is still the most natural programming paradigm 
(Mohan 1999). 

• For projects requiring high levels of scalability (e.g., 128 or more 
processors), the IBM SP or the Cray T3E are better choices 
(Namburu 1999). 

• Large MPPs tend to have stability problems; 128-processor Origins are 
particularly susceptible to periods of instability. 



Some performance differences are caused by design tradeoffs. The data 
show that some of these design tradeoffs sacrifice efficiency for peak speed 
and vice versa. Both approaches are of value and need to be considered 
when evaluating the merits of different systems. 

3.   Performance 

Figures 1-6 and Tables 1-8 show performance results from various sources. 
Some of these runs were made explicitly for benchmarking the performance of a 
particular system, other runs were made as part of a porting/tuning effort, and a 
few of the runs were made for other reasons. As such, there has been no 
systematic attempt made to identify the reasons why a particular code runs 
faster on one machine than another. The authors assume that in some cases, 
additional tuning could improve the performance of a particular code on a 
particular machine. However, such tuning is beyond the scope of this report. 
Furthermore, when a code is not locally written/maintained, there may be little 
or no opportunity for the user to tune a code. 

In the following CTH benchmark runs for Figure 1 and Table 2, the number of 
computational cells was increased by a factor of 2 each time the number of 
processors was doubled. This was done to maintain a constant number of 
computational cells per processor, which keeps the computation to 
communication ratio constant. In- this set of benchmarks, the number of 
iterations was fixed, meaning that perfect scaling results in constant benchmark 
run times. The difference in the run time on the 64-processor Origin 2000 and the 
128-processor Origin 2000 is the direct result of the increase in the average 
memory latency as one increases the size of an Origin 2000. 

For the runs in Figure 2 and Table 3, the grid was incrementally refined by 
decreasing the characteristic cell length in each direction by the cubed root of two 
each time the number of processors doubled. In these runs, the number of 
iterations was not fixed. Instead, the number of iterations approximately 
increased by the cube root of two each time the number of processors doubled, 
since the time step decreases as a result of finer mesh. When ideal scaling occurs, 
the Grind Time will decrease by half every time the number of processors is 
doubled. This results from the units of Grind Time being microseconds/zone/cycle. 
Since the time per cycle is expected to remain constant and the amount of work 
per cycle doubled, the amount of time/zone/cycle should be halved. The 
amount of time/cycle should remain constant, as in Table 2. It is worthwhile 
noting how closely the performance of these runs matches the ideal performance. 
Additionally, the performance of the 300-MHz Origin 2000 and the 400-MHz Sun 
HPC 10000 is very similar for both these runs and those involving F3D (see 
Figures 3 and 4 and Tables 4 and 5). 



Figures 3 and 4 and Tables 4-6 show the performance of two different versions of 
the implicit CFD code F3D for three problem sizes. The problem sizes range 
from 1-million to 206-million grid points without a significant decrease in the per 
processor performance. This is an indication that it is possible to tune an HPC 
code for a cache-based architecture. Tables 7 and 8 contain results for two other 
CFD codes. 

Figures 5 and 6 and Tables 9 and 10 demonstrate the effect on performance and 
the waste of CPU time that can occur when an SMP becomes overloaded. The 
program used for these measurements was the shared memory version of F3D. 
It ran the 1-million grid point test case. 

4.   Summary 

We have provided a number of observations and performance data from a 
variety of sources for a number of representative codes. These codes were run 
on the SGI Origin 2000 and the Sun HPC 10000. In many cases, there were also 
runs made on other commonly used HPC systems. Additionally, some of the 
tables provide comparisons of the performance achievable when using various 
programming paradigms. The last two tables demonstrate the inefficiency of 
allowing an SMP to become overloaded. It is hoped that this report and, in 
particular, the figures and data tables will enable the reader to better evaluate the 
merits of these systems in relation to his or her needs. 



8000 

7500 

7000 

6500 

6000 

5500 

5000 

4500 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

 ■  SGI Origin 2000 (R12K 300 MHz - 600 MFLOPS, 64p) 

-   -A—   - SGIOrigin2000(R12K300MHz,128p) 

Y Cray T3E-900 (900 MFLOPS) 

 ^  IBM SP (135 MHz-540 MFLOPS) 

~ © IBM SP Powert (200 MHz-800 MFLOPS) 

 ■  SUN HPC1000 (400 MHz UltraSPARC II - 800 MFLOPS, 64p) 

-A 

i li 11111111 li 111 li 1111111111 i li 11 ill111li1111111 il 

0     10    20    30    40    50    60    70    80    90   100 110 120 130 
Number of Processors 

Figure 1. CTH run times scaling the data set size in proportion to the number of 
processors used (data set supplied by Raju Namburu of the U.S. Army 
Research Laboratory, Aberdeen Proving Ground, MD). 

10J 

10' 

10° 

SGI Origin 2000 (R12K 300 MHz - 600 MFLOPS, 128p) 

« ■ 
s. _ -A- - 
V 
01 
c 10' A 

\ 
a 
TJ 
C 

8 (T \ 
0) 
(0 

e 
.a 
£ 

Y SUN HPC 10000 (400 MHz UltraSPARC II - 800 MFLOPS, 64p) 

^ 2 SUN HPC 10000 SYSTEMS CONNECTED USING ATM (OC-12) 

£}     Ideal scaling for the SGI Origin 2000 based on 8 processor results 

Ideal Scaling for the SUN HPC 10000 based on 8 processor results 

IBM SP2 (66.7 MHz - 267 MFLOPS) 

IF 
Number of Processors 

Figure 2. CTH run times (data set supplied by Steve Schraml of the U.S. Army Research 
Laboratory, Aberdeen Proving Ground, MD). 



8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

__.+ --   SGI R12K Origin 2000 (128 p, 300-MHz system) 

.-.*--   SUNHPC10000 (64 p, 400-MHz system) 

 n  HPV2500(16p,440-MHzsystem) (Quitte) 

--:r 
'Y 

*■■■' *■' * * * l"""l"l"M"M'Jll.ll, I. ■ ■ m ■ ■ ■!■ MI ■ M,i^. ■■I ' 

0       10      20      30      40      50      60      70      80      90     100    110    120    130 
Number of Processors 

Figure 3a. The performance of the shared memory version of the F3D code when run on 
modern scalable SMPs (1-million grid point test case).* 

8000 

7000 

6000 
3 
O 

S    5000 

|    4000 

I    3000 

2000 - 

1000 - 

CrayT3E-1200(SHMEM) 

_ .^. _    SGI Origin 2000 (128 p 300-MHz system, SHMEM) 

 *-—    IBMSP(160-MHzsystem, MPI) 

These results are courtesy of Marek Behr. 

0  10  20  30  40  50  60  70  80  90  100 110 120 130 
Number of Processors 

Figure 3b.  The performance of the distributed memory version of the F3D code when 
run on a modern scalable SMP/MPPs (1-million grid point test case).* 

The speeds have been adjusted to remove startup and termination costs. 



O 
O 

200 

150 

100 

50 - 

-A  64 p SGI Origin 2000 (195-MHz, 24 GB system) 

_►  128 p SGI Origin 2000 (195-MHz) 

■+ - - SGI R12K Origin 2000 (128 P, 300-MHz system) 

-• - - SUN HPC 10000 (64 processor, 400-MHz system) 

0  10  20  30  40  50  60  70  80  90 100 110 120 130 
NUMBER OF PROCESSORS 

Figure 4. The performance of the shared memory version of the F3D code when run on 
modern scalable SMPs (59-million grid point test case).* 

8000 r 
7500 §■ 
7000 §■ 
6500 j- 

6000 \- 

5500 j- 

5000 \ 

4500 i- 

w   4000 t- c 
|   3500 E- 

Wall clock time 

User CPU time 
- System CPU time 

>♦- 

5 10 
Number of Processors 

15 

Figure 5. The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded HP V-Class. 

The speeds have been adjusted to remove startup and termination costs. 



4000 / 
/ 

3500 _ / 

— —♦— - User CPU time                              /             , 

3000  • System CPU time                       /              / 

/               / 

1» 2500 
/               / 

/                / 
■u c 
o 
Ü 
0) 
(0 
c 
o 
E 
H 

2000 

1500 

^               / 

/       / 
i      / 

i     / 

1000 

500 
-♦^ 

i    / 
^ -*   / 

- *""       / 

,                  . .. •  
1      . 

) 10             "             20 30 
Number of Processors 

Figure 6. The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded SGI Origin 2000. 

Table 1. Miscellaneous benchmarking runs. 

Program/Dataset SGI (300-MHz R12000 Origin) 
(hh:mm/no. of processors) 

Sun (400-MHz UltraSPARC II) 
(hh:mm/no. of processors) 

Gaussian 98 Ran Failed to run 
Overflow (MPI version) 2:40/24 3:25/24 
CTH/128.in 6:58/64 

7:31/56 
6:14/64 

POP 3:18/16 Failed to compile 
Gamess 0:19/12 0:12/12 
Xpatch 4:23/1 6:23/1 



Table 2. CTH benchmark runs.a-b 

No. of 
System Processor Speed 

(MHz) 
Peak Performance 

(MFLOPS) 
Processors Run Time 

(s) 
SGI Origin 2000 300 600 1 1178 
(64-processor system) 2 

4 
8 

16 

1439 
1427 
2089 
1811 

SGI Origin 2000 300 600 32 3144 
(128-processor system) 48 

64 
96 

128 

3544 
3423 
3339 
3676 

CrayT3E-900 450 900 128 1732 
IBMSP 135 540 64 4822 
(P2SC) 128 4433 
Sun HPC10000 400 800 1 

2 
4 
8 

16 
32 
48 
64 

1971 
1986 
2092 
2331 
2506 
2749 
2501 
2895 

Sun HPC10000 400 800 64 4391 
(96-processor dataset) 
Sun HPC 10000 400 800 64 5673 
(128-processor dataset) 

a Data set courtesy of Raju Namburu, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD. 
b The job size was scaled in proportion to the number of processors. 

10 



Table 3. Additional CTHresults.a-b 

Processor No. of 
System Speed Peak Performance Processors Grind Time 

(MHz) (MFLOPS) (ns/zone/cycle) 

Actual IdeaP> 
SGI Origin 2000 300 600 1 36.979 NA 
(128 processor) 2 20.479 NA 

4 10.355 NA 
8 7.2749 7.2749 

16 4.0035 3.6375 
32 2.0599 1.8187 
48 1.4815 1.2125 
64 1.2456 0.90936 
96 0.73997 0.60624 

SGI Origin 2000 195 390 1 53.155 NA 
(128 processor) 
Sun HPC10000 400 800 1 47.558 NA 

2 25.622 NA 
4 11.875 ,NA 
8 7.0330 7.0330 

16 3.7468 3.5165 
32 1.8792 1.7583 
48 1.2385 1.1722 
60 1.1170 0.93773 
63 1.1075 0.89308 
64 1.1332 0.87913 

2SunHPC1000 400 800 2 24.357 NA 
connected using 4 12.635 NA 
ATM 8 8.0182 8.0182 
(OC-12) 16 4.0605 4.0091 

32 2.1539 2.0046 
48 1.5136 1.3364 
64 1.3593 1.0023 
96 0.92424 0.66818 

IBM SP (Power 2) 66.7 267 1 100.24 NA 
2 50.12 NA 
4 26.83 NA 
8 15.23 15.230 

16 8.13 7.615 
32 4.09 3.808 
64 1.69 1.904 

a The job size was scaled in proportion to the number of processors (Kimsey et al. 1998; Schraml and Kimsey 
2000). 

b The ideal values are extrapolated from the performance of runs using eight processors. 

11 



Table 4.   The performance of various versions of the F3D code when run on modern 
scalable systems (1-million grid point test case).3 

System 
Peak Processor 

Speed 

(MFLOPS) 

No. of 
Processors Used Version Speed 

(time steps/hr) MFLOPS 

SGI R10K 02K 390 8 Compiler Directives 793 1.04E3 
SGI R12K 02K 600 8 SHMEM 382 4.99E2 
SGIR10KO2K 390 32 Compiler Directives 2138 2.79E3 
SGIR12K02K 600 

600 
32 SHMEM 

Compiler Directives 
989 

2877 
1.29E3 
3.76E3 

SGIR10KO2K 390 48 Compiler Directives 2725 3.56E3 
SGIR12K02K 600 

600 
48 SHMEM 

Compiler Directives 
1083 
3545 

1.42E3 
4.63E3 

SGIR10KO2K 390 64 Compiler Directives 2601 3.40E3 
SGIR12K02K 600 

600 
64 SHMEM 

Compiler Directives 
1050 
3694 

1.37E3 
4.83E3 

SGI R10K 02K 390 88 Compiler Directives 3619 4.73E3 
SGI R12K 02K 600 

600 
88 SHMEM 

Compiler Directives 
1320 
5087 

1.73E3 
6.65E3 

Cray T3E-1200 1200 8 
32 
48 
64 
88 

128 

SHMEM 349 
1062 
1431 
1705 
2443 
2948 

4.56E2 
1.39E3 
1.87E3 
2.23E3 
3.19E3 
3.85E3 

IBM SP160 (MHz) 640 8 
32 
48 
64 
88 

MPI 199 
342 
420 
423 
396 

2.60E2 
4.47E2 
5.49E2 
5.52E2 
5.18E2 

Sun HPC10000 800 8 
32 
48 
56 
64 

Compiler Directives 999 
2619 
3093 
3391 
2819 

1.31E3 
3.64E3 
4.04E3 
4.43E3 
3.68E3 

HP V-Class 1760 8 
14 

Compiler Directives 1632 
2392 

2.13E3 
3.13E3 

a For additional details, see Behr et al. (2000). 

12 



Table 5.  The performance of the shared memory version of the F3D code when run on 
modern scalable SMPs (59-milMon grid point test case). 

System Peak Processor Speed 

(MFLOPS) 
No. of Processors Used Speed 

(time steps/hr) MFLOPS 

SGI R12K 600 1 2.3 1.79E2 
Origin 16 33 2.57E3 

32 59 4.59E3 
48 73 5.68E3 
64 91 7.08E3 
96 135 1.05E4 

124 153 1.19E4 
SunHPC 800 1 2.1 1.63E2 
10000 8 15.1 1.18E3 

16 26 2.02E3 
32 45 3.50E3 
48 61 4.75E3 
56 70 5.45E3 
64 73 5.68E3 

Table 6.  The performance of the shared memory version of the F3D code when run on 
modern scalable SMPs (206-million grid point test case). 

System Peak Processor Speed 

(MFLOPS) 
No. of Processors Used Speed 

(time steps/hr) MFLOPS 

SGI R12K 600 1 0.62 1.67E2 
Origin 16 7.4 2.00E3 

32 15.2 4.10E3 
48 18 4.86E3 
64 26 2.02E3 
96 38 1.03E4 

124 48 1.30E4 

Table 7. A comparison of the performance of the shared memory implementation of the 
CFD code Overflow and the PVM implementation of the same code.3 

No. of Processors 
System Peak Processor Speed Used RunTime 

(MFLOPS) (s) 

Shared Memoryb PVM 
SGI R10K 390 1 959 N/A 
Origin 4 318 335 

8 184 191 
16 129 117 
31 96 N/Ac 

a For a complete discussion of these results, see Hisley et al. (1998). 
b The shared memory implementation combined compiler directives and the automatic parallelization facility 

(-pfa). 
c The 31-processor PVM run was not made because it was too difficult to decompose the grids with the 

available tools. 

13 



Table 8. The performance of LES (a CFD code using direct simulation of large eddies).3-b 

System Peak Processor Speed No. of Processors Used Run Time 
(MFLOPS) (s) 

SGI R12K Origin '   600 1 1232 
2 619 

4 314 

16 153 
a 64 x 64 grid. 
b The program was parallelized using the SPMD programming style with OpenMP. 

Table 9.   The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded HP V-Class.a 

No. of Processors Used Wall Clock Time 

(s) 

User CPU Time 

(s) 

System CPU Time 

(s) 
1 3524 3244 8 

2 1698 3301 72 

3 1203 3303 186 

4 1974 3625 2302 

5 1871 3630 2696 

6 2554 3837 4955 

7 3166 4051 7089 
8 2915 3915 7223 

' The job was run for 200 time steps. 

Table 10.  The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded SGI Origin 2000.a 

No. of Processors Used Wall Clock Time 

(s) 

User CPU Time 

(s) 

System CPU Time 

(s) 
1 503 390 5 

5 225 512 7 

10 256 729 9 

15 360 935 11 

20 1322 2263 36 

25 2119 3423 138 

30 3691 4414 188 
" The job was run for 40 time steps. 

14 



5.   References 

Behr, M., D. M. Pressel, and W. B. Sturek, Sr. "Comments on CFD Code 
Performance on Scalable Architectures." Computer Methods in Applied 
Mechanics, New York: Elsevier Science LTD, 2000. 

Hisley, D. M., G. Agrawal, and L. Pollock. "Performance Studies of the 
Parallelization of a CFD Solver on the Origin 2000." Proceedings of the 21st 
Army Science Conference, Department of the Army, 1998. 

Kimsey, K. D., S. J. Schraml, and E. S. Hertel. "Scalable Computation in 
Penetration Mechanics." International Journal on Advances in Engineering 
Software Including Computing Systems in Engineering, vol. 29, pp. 209-215, 
1998. 

Mohan, R. Personal communication with D. Pressel. U.S. Army Research 
Laboratory, Aberdeen Proving Ground, MD, 1999. 

Namburu, R. Personal communication with D. Pressel. U.S. Army Research 
Laboratory, Aberdeen Proving Ground, MD, 1999. 

Schraml, S. J., and K. D. Kimsey. "Scalability of the CTH Hydrodynamics Code 
on the HPC 10000 Architecture." ARL-TR-2173, U.S. Army Research 
Laboratory, Aberdeen Proving Ground, MD, February 2000. 

Shires, D. Personal communication with D. Pressel. U.S. Army Research 
Laboratory, Aberdeen Proving Ground, MD, 2000. 

Wierschke, S. G., MAJ. "CHSSI Semiannual Report: Computational Chemistry 
and Materials Science (CCM)." U.S. Air Force Research Laboratory, 
15 October 1997. 

15 



INTENTIONALLY LEFT BLANK. 

16 



Glossary 

cc-NUMA 

CPU 

CTA 

DC 

HPC 

HPF 

MFLOPS 

MPI 

MPP 

MSRC 

PVM 

SHMEM 

SMP 

SPMD 

Cache coherent nominiform memory access 

Central Processing Unit 

Computational Technology Area 

Distributed Center 

High-Perf ormance Computing 

High Performance Fortram 

Million Floating Point Operations Per Second 

Message Passing Interface 

Massively Parallel Processor 

Major Shared Resource Center 

Parallel Virtual Machine 

Low latency message passing library developed by CRAY 
Research for the T3D and T3E product lines. 

Symmetric Multiprocessor—a term normally only applied to 
shared memory systems using hardware memory coherency 
protocols. 

Single Program Multiple Data 

17 



INTENTIONALLY LEFT BLANK. 

18 



NO. OF NO. OF 
COPIES ORGANIZATION COPIES 

2 DEFENSE TECHNICAL 
INFORMATION CENTER 
DTIC OCA 
8725 JOHN J KINGMAN RD 
STE0944 
FT BELVOIR VA 22060-6218 

3 

HQDA 
DAMOFDT 
400 ARMY PENTAGON 
WASHINGTON DC 20310-0460 

ORGANIZATION 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCILL 
2800 POWDER MILL RD 
ADELPHI MD 20783-1197 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCIIST 
2800 POWDER MILL RD 
ADELPHI MD 20783-1197 

OSD 
OUSD(A&T)/ODDR&E(R) 
DRRJTREW 
3800 DEFENSE PENTAGON 
WASHINGTON DC 20301-3800 

ABERDEEN PROVING GROUND 

2        DIRUSARL 
AMSRL Q LP (BLDG 305) 

COMMANDING GENERAL 
US ARMY MATERIEL CMD 
AMCRDATF 
5001 EISENHOWER AVE 
ALEXANDRIA VA 22333-0001 

INST FOR ADVNCD TCHNLGY 
THE UNW OF TEXAS AT AUSTIN 
3925 W BRAKER LN STE 400 
AUSTIN TX 78759-5316 

US MILITARY ACADEMY 
MATH SCI CTR EXCELLENCE 
MADNMATH 
THAYERHALL 
WEST POINT NY 10996-1786 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRL D 
DRD SMITH 
2800 POWDER MILL RD 
ADELPHI MD 20783-1197 

DIRECTOR 
US ARMY RESEARCH LAB 
AMSRL CI AIR 
2800 POWDER MILL RD 
ADELPHI MD 20783-1197 

19 



NO. OF NO. OF 
COPIES ORGANIZATION COPIES 

1 PROGRAM DIRECTOR 
C HENRY 
1010 N GLEBE RDSTE 510 
ARLINGTON VA 22201 

1 

ORGANIZATION 

ARMYAEROFLIGHT 
DYNAMICS DIRECTORATE 
R MEAKIN M S 258 1 
MOFFETT HELD CA 94035-1000 

DPTY PROGRAM DIRECTOR 
L DAVIS 
1010 N GLEBE RD STE 510 
ARLINGTON VA 22201 

DISTRIBUTED CENTERS 
PROJECT OFFICER 
V THOMAS 
1010 N GLEBE RDSTE 510 
ARLINGTON VA 22201 

HPC CTRS PROJECT MNGR 
J BAIRD 
1010 N GLEBE RD STE 510 
ARLINGTON VA 22201 

CHSSI PROJECT MNGR 
L PERKINS 
1010 N GLEBE RD STE 510 
ARLINGTON VA 22201 

RICE UNIVERSITY 
MECHANICAL ENGRNG & 
MATERIALS SCIENCE 
M BEHR MS 321 
6100 MAIN ST 
HOUSTON TX 77005 

J OSBURN CODE 5594 
4555 OVERLOOK RD 
BLDG A49 RM 15 
WASHINGTON DC 20375-5340 

NAVAL RSCH LAB 
J BORIS CODE 6400 
4555 OVERLOOK AVE SW 
WASHINGTON DC 20375-5344 

WLFIMC 
B STRANG 
BLDG 450 
2645 FIFTH ST STE 7 
WPAFB OH 45433-7913 

NAVAL RSCH LAB 
R RAMAMURTI CODE 6410 
WASHINGTON DC 20375-5344 

NAVAL RSCH LAB 
HEAD OCEAN DYNAMICS 
& PREDICTION BRANCH 
J W MCCAFFREY JR CODE 7320 
STENNIS SPACE CENTER MS 
39529 

US AIR FORCE WRIGHT LAB 
WLFIM 
JJSSHANG 
2645 FIFTH ST STE 6 
WPAFB OH 45433-7912 

US AIR FORCE PHILIPS LAB 
OLAC PL RKFE 
CAPTSGWIERSCHKE 
10 E SATURN BLVD 
EDWARDS AFB CA 93524-7680 

NAVAL RSCH LAB 
DR D PAPACONSTANTOPOULOS 
CODE 6390 
WASHINGTON DC 20375-5000 

AIR FORCE RSCH LAB DEHE 
RPETERKIN 
3550 ABERDEEN AVE SE 
KIRTLAND AFB NM 87117-5776 

NAVAL RSCH LAB 
RSCH OCEANOGRAPHER CNMOC 
GHEBURN 
BLDG 1020 RM 178 
STENNIS SPACE CENTER MS 
39529 

AIR FORCE RSCH LAB 
INFORMATION DIRECTORATE 
RWLINDERMAN 
26 ELECTRONIC PKWY 
ROME NY 13441-4514 

SPAWARSYSCEN D4402 
R A WASILAUSKY 
BLDG 33 RM 0071A 
53560 HULL ST 
SAN DIEGO CA 92152-5001 

20 



NO. OF NO. OF 
COPIES ORGANIZATION COPIES 

1 USAE WATERWAYS 
EXPERIMENT STATION 
CEWESHVC 
JP HOLLAND 
3909 HALLS FERRY RD 
VICKSBURG MS 39180-6199 

1 

ORGANIZATION 

UNIVERSITY OF TENNESSEE 
COMPUTER SCIENCE DEPT 
S MOORE 
1122 VOLUNTEER BLVD 
STE203 
KNOXVILLE TN 37996-3450 

US ARMY CECOM RSCH 
DEVELOPMENT & ENGRNG CTR 
AMSEL RDC2 
BSPERLMAN 
FT MONMOUTH NJ 07703 

SPACE & NAVAL WARFARE 
SYSTEMS CTR 
K BROMLEY CODE D7305 
BLDG606RM325 
53140 SYSTEMS ST 
SAN DIEGO CA 92152-5001 

DIRECTOR 
DEPARTMENT OF ASTRONOMY 
P WOODWARD 
356 PHYSICS BLDG 
116 CHURCH ST SE 
MINNEAPOLIS MN 55455 

RICE UNIVERSITY 
MECHANICAL ENGRNG & 
MATERIALS SCIENCE 
TTEZDUYARMS321 
6100 MAIN ST 
HOUSTON TX 77005 

ARMY HIGH PERFORMANCE 
COMPUTING RSCH CTR 
BBRYAN 
1200 WASHINGTON AVE 
S MINNEAPOLIS MN 55415 

ARMY HIGH PERFORMANCE 
COMPUTING RSCH CTR 
G V CANDLER 
1200 WASHINGTON AVE 
S MINNEAPOLIS MN 55415 

NAVAL CMD CNTRL & 
OCEAN SURVEILLANCE CTR 
LPARNELL 
NCCOSC RDTE DIV D3603 
49590 LASSINGRD 
SAN DIEGO CA 92152-6148 

ABERDEEN PROVING GROUND 

33      DIRUSARL 
AMSRL CI 

N RADHAKRISHNAN 
AMSRL CIH 

CNIETUBICZ 
WSTUREK 

AMSRL CI HC 
PCHUNG 
JCLARKE 
DHISLEY 
M HURLEY 
A MARK 
R MOHAN 
R NAMBURU 
DPRESSEL 
D SHIRES 
RVALISETTY 
CZOLTANI 

AMSRL CI HS 
D BROWN 
T KENDALL 
M KNOWLES 
P MATTHEWS 
RPRABHAKARAN 
TPRESSLEY 
K SMITH 
S THOMPSON 

AMSRL WMBC 
KHEAVEY 
JSAHU 
P WEINACHT 

AMSRL WM BF 
HEDGE 

AMSRL WMT 
B BURNS 

AMSRL WMTA 
D KLEPONIS 
M NORMANDIA 

AMSRL WM TC 
RCOATES 
KKIMSEY 
SSCHETTLER 
SSCHRAML 

21 



INTENTIONALLY LEFT BLANK. 

22 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden lor this collection of Information Is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this 
collection of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Hlahwav, Suite 1804. Arllnoton. VA 82202-4302. and to fhe Office of Wanaoement and Budget. PaoerworV Reduction Prolect(0704-0188l. Washington. DC 20503. 

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE AND DATES COVERED 

March 2002 Final, July 1999-June 2000 
4. TITLE AND SUBTITLE 

A Comparison of the Performance of Two Popular Symmetric Multiprocessors 
When Used to Run High Performance Computing Applications 

6. AUTHOR(S) 

Daniel M. Pressel, Stephen Schraml, Steven Thompson,* Dixie Hisley, 
Punyam Satya-narayana,* Michael Knowles,* and Darren M. Wahf 

5. FUNDING NUMBERS 

665803.731 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Army Research Laboratory 
ATTN: AMSRL-CI-HC 
Aberdeen Proving Ground, MD 21005-5067 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-2476 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

* U.S. Army Research Laboratory Major Shared Resource Center, Raytheon Systems Company, 939-1 Beards Hill 
Rd., Suite 191, Aberdeen, MD 21001 f U.S. Army Research Laboratory Major Shared Resource Center, HPTi, 
939-1 Beards Hill Rd., Suite 191, Aberdeen, MD 21001 
12a. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
Traditionally, symmetric multiprocessors have used modest numbers of processors. Since many of them were 
bus-based systems, they inherently lacked scalability to what might be referred to as moderate-sized systems. With 
the advent of the Sun HPC 10000 and the SGI Origin, we now have symmetric multiprocessors that have successfully 
scaled to moderate-sized systems. In fact, SGI has had some success at scaling the Origin into the lower end of the 
range of large systems. The first symmetric multiprocessor to make that claim was the Convex Exemplar. But based 
on our experience at the Distributed Center located at NRAD, San Diego, CA (now the Naval Command Control and 
Ocean Surveillance Center), its overall performance and scalability left something to be desired. 

This report presents the results from runs involving a variety of programs on the SGI Origins and Sun HPC 10000s 
located at the U.S. Army Research Laboratory (ARL)-MSRC, the Naval Research Laboratory (NRL-DC), 
Washington, DC, and other places. Some of these codes (e.g., F3D) are shared memory codes using OPENMP or its 
predecessors. The remaining codes use message passing (mostly MPI, but one PVM code was tested as well). 
Additionally, a limited number of runs were made with the CTH code when using processors on more than one Sun 
HPC 10000. While most of these codes ran well, some codes did require modifications. Additionally, in the process 
of making these measurements, the authors gained useful insights as to what does and does not work well on these 
systems. 
14. SUBJECT TERMS 

supercomputer, high performance computing, parallel programming, shared memory 
programming 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 
NSN 7540-01-280-5500 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

26 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

23 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 298-102 



INTENTIONALLY LEFT BLANK. 

24 


